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ABSTRACT
Background Angiographic parameters can facilitate 
the risk stratification of coronary lesions but remain 
insufficient in the prediction of future myocardial infarction 
(MI).
AIMS We compared the ability of humans, angiographic 
parameters and deep learning (DL) to predict the lesion 
that would be responsible for a future MI in a population of 
patients with non- significant CAD at baseline.
Methods We retrospectively included patients who 
underwent invasive coronary angiography (ICA) for MI, in 
whom a previous angiogram had been performed within 
5 years. The ability of human visual assessment, diameter 
stenosis, area stenosis, quantitative flow ratio (QFR) and 
DL to predict the future culprit lesion (FCL) was compared.
Results In total, 746 cropped ICA images of FCL and 
non- culprit lesions (NCL) were analysed. Predictive 
models for each modality were developed in a training 
set before validation in a test set. DL exhibited the best 
predictive performance with an area under the curve of 
0.81, compared with diameter stenosis (0.62, p=0.04), 
area stenosis (0.58, p=0.05) and QFR (0.67, p=0.13). DL 
exhibited a significant net reclassification improvement 
(NRI) compared with area stenosis (0.75, p=0.03) and QFR 
(0.95, p=0.01), and a positive nonsignificant NRI when 
compared with diameter stenosis. Among all models, DL 
demonstrated the highest accuracy (0.78) followed by 
QFR (0.70) and area stenosis (0.68). Predictions based on 
human visual assessment and diameter stenosis had the 
lowest accuracy (0.58).
Conclusion In this feasibility study, DL outperformed 
human visual assessment and established angiographic 
parameters in the prediction of FCLs. Larger studies are 
now required to confirm this finding.

INTRODUCTION
In patients with stable coronary artery disease 
(CAD), the identification of lesions during 
invasive coronary angiography (ICA) that 
will be responsible for a future myocar-
dial infarction (MI) remains challenging. 
Techniques used for the risk stratification 

of coronary lesions have evolved over time. 
While the assessment of a coronary lesion 
during ICA always starts with a simple visual 
assessment by the performing interventional 
cardiologist, the evaluation of the anatomical 
severity of a lesion has been improved by the 
advent of quantitative coronary angiography 
(QCA), permitting the calculation of diam-
eter stenosis and area stenosis. More recently, 
techniques to evaluate the haemodynamic 
impact of a lesion have been developed, 
further improving risk stratification. Frac-
tional flow reserve (FFR)—a gold- standard 
measure of the haemodynamic impact of 
an epicardial coronary artery stenosis1 2—
has been shown to be a better predictor of 
future MI than diameter stenosis measured 
by QCA.1 In patients with CAD treated with 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Current tools for the risk stratification of chronic 
coronary lesions based on anatomical severity and 
haemodynamic impact are imperfect, resulting in 
some lesions deemed low risk ultimately being re-
sponsible for a future myocardial infarction.

WHAT THIS STUDY ADDS
 ⇒ In this feasibility study, the first of its kind, we 
demonstrate that a deep learning (DL) algorithm 
using cropped images of coronary stenoses from 
invasive coronary angiography outperformed estab-
lished angiographic risk stratifiers, as well as the 
visual assessment of cardiologists, in the prediction 
of future culprit lesions.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ If these findings can be validated in larger cohorts, 
DL- based approaches to coronary lesion risk strat-
ification could have a place in routine clinical prac-
tice in the future.
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medical therapy alone despite the presence of a lesion 
with a significant FFR, a future MI occurs most often at 
the site of a pathological FFR.2 Yet, up to 8% of patients 
with angiographically mild or intermediate stenoses 
deemed non- significant by FFR still present with an MI 
or a need for urgent revascularisation in the ensuing 2 
years.3

The vast quantities of multivariate, multiformat 
medical data now available lends itself to the use of 
machine learning (ML) for the analysis of patient data. 
ML has been shown to be highly effective in predicting 
MI based on age, sex and early troponin values as well 
on 12- lead ECG alone among patients presenting to the 
emergency department.4–6 Applications of deep learning 
(DL), a branch of ML based on artificial neural networks, 
in the interpretation of ICA images have been limited 
to the automated segmentation of coronary arteries or 
the identification of significant coronary stenoses.7–10 
More recently, DL has been applied to the detection of 
thin- cap fibroatheroma from optical coherence tomog-
raphy images.11 However, DL has yet to be applied to the 
prediction of future MI based on ICA images only.

We recently reported that, in a population of patients 
who underwent ICA for an MI in whom ICA had been 
performed within the previous 5 years, mild coronary 
stenoses subsequently responsible for an MI exhibited 
a greater diameter stenosis and lower quantitative flow 
ratio (QFR) (quantitative flow ratio, an angiography- 
derived FFR) years before the event.12 However, given the 
described limitations of angiographic parameters in the 
risk stratification of non- significant coronary lesions, we 
evaluated if DL, trained on baseline angiographic images 
of non- significant lesions, could better predict future MI 
as compared with human predictions and predictions 
based on QCA or QFR.

METHODS
Study design
Data were obtained from the Future Culprit study,12 a 
retrospective multicentre case–control study conducted 
in three European PCI centres (Lausanne University 
Hospital, Switzerland; Fribourg University Hospital, Swit-
zerland; OLV Aalst, Belgium).

Study population
Details of the Future Culprit study have been previously 
reported.12 Briefly, patient selection was performed in 
two steps: (1) all adult patients admitted between January 
2008 and December 2019 with an MI (non- ST eleva-
tion MI (NSTEMI) and ST- elevation MI (STEMI)) were 
screened to identify those with a previous coronary angi-
ography (defined as baseline coronary angiography) in 
the 5 years preceding the MI. In order to be included, 
patients required images permitting QFR analysis of the 
lesion that would be responsible for the future MI (future 
culprit lesion, FCL). The latter was defined according to 
territory affected by ECG changes at the time of MI. In 

the absence of such modifications, FCL was defined as 
the most severe lesion treated. In addition, at least one 
additional major epicardial vessel had to be available 
for QFR analysis. The lesions identified on these vessels 
were defined as non- culprit lesions (NCL). The lesions 
were evaluated by visual assessment during screening 
and were analysed if they had a diameter of stenosis of 
at least 10%. Exclusion criteria for QFR analysis were: 
in- stent restenosis as the cause of MI, coronary artery 
bypass graft, absence of coronary lesions on the coronary 
angiogram performed at the time of the MI, previous 
stenting of the vessel with the culprit lesion, culprit bifur-
cation lesions with a Medina classification of 1, 1, 1 or 
culprit ostial lesions. (2) The FCL was identified on the 
baseline coronary angiograms. Patients with angiograms 
of insufficient quality to allow accurate QFR analysis were 
excluded (ie, overlap between vessels, insufficient projec-
tion to allow three- dimensional (3D) reconstruction, 
inadequate contrast filling). Similarly, patients without 
at least one non- culprit vessel available for QFR analysis 
were excluded.

Training-test set splitting
The dataset consisted of 200 lesions (83 FCL and 117 
NCL). A total of 160 lesions (80%) were used for training 
with the remaining 40 lesions (20%) being used for 
testing. For both the angiographic parameter analysis and 
the DL analysis, the same lesions were used for testing (40 
lesions: 9 FCLs=20 patches, 31 NCLs=55 patches). For the 
DL analysis, the training set (160 lesions: 74 FCLs=183 
patches, 86 NCLs=145 patches) was enriched by an addi-
tional 225 NCLs for which QCA analysis was not avail-
able, thus creating a training/validation set of 385 lesions 
(74 FCLs=183 patches, 311 NCLs=488 patches) (online 
supplemental figure 1).

Calculation of diameter stenosis, area stenosis and QFR
3D- QCA analysis and QFR calculation were performed 
with validated software (QAngio XA 3D/QFR; Medis, 
Leiden, The Netherlands) by certified investigators, and 
a second operator certified to train operators reviewed all 
the cases. Two angiographic views separated by at least 25°, 
with no foreshortening or overlapping of the segment of 
interest, and with adequate contrast- filling end- diastolic 
images, were selected for 3D- QCA based on automatically 
delineated detection of the lumen contour with manual 
correction if needed. The percentage diameter stenosis 
and area stenosis were calculated. Thereafter, the TIMI 
frame count was used to compute the contrast- flow QFR 
(QFR) of a given lesion. This latter analysis is based on 
a modelled hyperaemic flow velocity allowing QFR eval-
uation from angiography without pharmacologically 
induced hyperaemia.

Patch selection
For each patient, 1–4 angiographic frames acquired from 
different angles during the baseline angiogram were 
manually selected and the previously defined FCL and 
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NCL annotated by two interventional cardiologists. A 
total of 374 anonymised and labelled images of 1014×1014 
pixels each, were produced. Patches were then created 
by extracting 224×224 pixels centred around the anno-
tated stenosis region from the raw images, in such a way 
that only one stenosis was included per patch (figure 1). 
Patches centred on lesions were chosen for the DL algo-
rithm over whole angiographic frames due to the small 
dataset. Furthermore, this approach exploited pre- 
existing knowledge of the coronary anatomy by focusing 
on regions of the coronary arteries deemed higher risk 
due to the presence of atherosclerosis. The DL algo-
rithm was thus a means of enhancing pre- existing clinical 
knowledge.

DL framework
DL was used to classify coronary lesions as either FCL 
and NCL. Patches were used for the training of a state- of- 
the- art deep network model called ResNet18.13 A block 
diagram containing the building blocks of such an archi-
tecture is shown in figure 2. Out of all patches, 80% were 
used for training, 10% for validation and 10% for testing. 
Importantly, the lesions in the test set corresponded to 
same lesions in the test set of the angiographic analysis (40 
lesions: 9 FCLs=20 patches, 31 NCLs=55 patches). Due to 
the unbalanced nature of the dataset, data augmentation 
was subsequently performed on patches in the training 
set by randomly replicating some of the culprit patches 

Figure 1 Examples of patches (on the right) extracted from an annotated CA (on the left). Red and green colour represents 
culprit and non- culprit lesions, respectively. CA, coronary angiography.

Figure 2 Building blocks of the ResNet architecture. The input is processed through 18 stages; many of these stages include 
connections that transmit the input to a later stage through a skip connection. The final stage is a fully connected layer that 
provides a classification decision: culprit or non- culprit. The text in each of the block describes its key properties: N × N conv 
is the kernel size; the next integer is the number of kernels; if present /N describes the spatial subsampling (stride). Figure 
adapted from Reith and Wandell.24
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and applying a sequence of transformations from the 
Albumentations library: (1) Median Blur, (2) Rotation, 
(3) ShiftScaleRotate and (4) Resize to 224×224. The 
final model is the result of 10- fold cross- validation on the 
training and validation set.

The network was initialised using a pretrained model 
from ImageNet,14 one of the largest image databases used 
in DL and computer vision research. The performance of 
the network was measured using four evaluation metrics: 
(1) classification accuracy that measures the performance 
of correctly predicted classes; (2) sensitivity; (3) speci-
ficity and (4) F1 score, which is defined as the harmonic 
mean of precision and recall.15 The hyperparameters 
for training the network, that is, the learning rate, and 
the weight decay, were determined using 10- fold cross- 
validation on the training and validation set, and were 
set to 0.0015 and 0.1113, respectively. These hyperpa-
rameters were chosen based on the maximum F1 score. 
With these hyperparameters, we trained a network, by 
minimising the binary cross entropy loss with a stochastic 
gradient descent optimiser, using both training and 
validation data. The batch size was fixed to 20. The test 
set was used only for the final evaluation of the model. 
Due to the very limited number of patients, training was 
performed patch- wise, thus not taking into account the 
correspondence between different views of the same 
stenosis. However, a stenosis was classified as FCL or NCL 
if any one view was classified as FCL.

Human predictions
Two trained interventional cardiologists were shown 
patches from the test set and asked to make predictions 
on lesion status (FCL or NCL). Cardiologists were blinded 
to one another’s predictions as well as the angiography- 
derived parameters for the lesions. In cases where 
discordance existed between predictions for a lesion (1 x 
FCL, 1 x NCL), a third cardiologist provided a prediction 
and majority voting was used to define an overall human 
prediction for the lesion. Given that the DL algorithm 
was trained and tested on data with a similar proportion 
of FCL, cardiologists were made aware of the approxi-
mate proportion of FCL in the test set before giving their 
predictions.

Endpoints
The coprimary endpoints used for the evaluation of global 
predictive capacity for future MI were: (1) area under the 
curve (AUC) and (2) Net Reclassification Index (NRI) of 
DL compared with angiographic parameters (diameter 
stenosis, area stenosis, QFR).

The secondary endpoints were the accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV) of DL as compared with predic-
tions of FCL from humans and those derived from angio-
graphic parameters.

Statistical methods
For each angiographic predictor (diameter stenosis, area 
stenosis, QFR), a logistic regression model was fitted to 

data in the training set. The Youden J statistic was used 
to define the optimal cut- off for the prediction of lesion 
status. The fitted regression models were used to generate 
probabilities for culprit status for each lesion in the test 
set. For each angiographic parameter, the calculated 
optimal cut- off was used to predict culprit status of each 
lesion in the test set. For the fitted DL model, a cut- off 
of 0.5 was used to predict culprit status for each lesion in 
the test set. Comparisons between the AUC of different 
models were performed using Delong’s test. NRI was used 
to quantify if the DL model provided clinically relevant 
improvements in prediction when compared with each 
angiographic parameter. Based on the defined cut- off for 
each model, a confusion matrix was generated and accu-
racy, sensitivity, specificity, PPV, NPV, along with 95% CIs, 
were calculated. Statistical analysis was performed with 
Python V.3.8.4 and R V.4.1.1 (R Foundation for Statistical 
Computing, Vienna, Austria). A p≤0.05 was defined as 
statistically significant.

RESULTS
Study population
Details of the study population and its derivation have 
been previously reported.12 In brief, a total of 6885 
patients admitted with MI between 2008 and 2019 were 
screened, and 775 potentially eligible patients with MI and 
at least one previous coronary angiogram were selected: 
603 patients were excluded on initial screening due to 
the presence of at least one exclusion criterion. Among 
the 172 remaining patients, 89 additional patients were 
excluded in the second selection step due to insufficient 
quality of angiography images to allow QFR analysis. The 
final selection comprised 83 patients, corresponding to 
200 lesions (83 FCLs and 117 NCLs). In total, 746 patches 
were used for the DL analysis of which 203 were FCL 
(27.2%) (online supplemental figure 1).

The mean age of patients was 68.8±12.8 years with the 
majority being male (72.3%). Hypertension was present 
in 72.3%, diabetes in 24.1%, while 48.2% of the patients 
had a history of previous PCI. The clinical presentation 
was NSTEMI in 63% of cases, and STEMI in the remaining 
cases. The median time between index angiography and 
MI was 23 months (IQR 10.3–40.0). The coronary vessels 
implicated were well balanced and did not differ between 
FCL and NCL (p=0.503).

Receiver operating characteristic curve analysis (DL 
performance versus angiographic parameters)
The predictive performance of all models on the test set 
are shown in figure 3 and table 1. The DL model exhib-
ited the best predictive performance with an AUC of 0.81, 
which was significantly higher than the AUC for diameter 
stenosis (0.62, p=0.04) and area stenosis (0.58, p=0.05), 
and numerically higher than that for QFR (0.67, p=0.13).

NRI (DL performance versus angiographic parameters)
The DL model also demonstrated improved predictive 
performance as measured by NRI (table 2). Compared 

O
pen H

eart: first published as 10.1136/openhrt-2022-002237 on 3 January 2023. D
ow

nloaded from
 https://openheart.bm

j.com
 on 10 July 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.

https://dx.doi.org/10.1136/openhrt-2022-002237


5Mahendiran T, et al. Open Heart 2023;10:e002237. doi:10.1136/openhrt-2022-002237

Coronary artery disease

with models derived from area stenosis and QFR, the DL 
model exhibited a significant NRI (area stenosis 0.75, 
p=0.03; QFR 0.95, p=0.01). DL also exhibited a positive 
NRI when compared with diameter stenosis, although 
this did not reach statistical significance (0.60, p=0.10).

DL versus humans and angiographic parameters in the 
prediction of FCL
Of the 40 lesions in the test set, complete concordance 
between cardiologist predictions (FCL and NCL status) 
was present for 30 lesions (75%). For the remaining 10 
lesions (25%), a third cardiologist blinded to previous 
predictions provided the deciding prediction for lesion 
status.

The accuracies, sensitivities, specificities, PPV and 
NPV are presented in table 2. Among all models, DL 
demonstrated the highest accuracy (0.78), followed by 

QFR (0.70) and area stenosis (0.68). Human predictions 
along with diameter stenosis exhibited the lowest accu-
racy (0.58). Even if not always statistically significant, the 
sensitivity, specificity, PPV and NPV of DL systematically 
matched or were higher than those for diameter stenosis, 
area stenosis and QFR (table 2). DL had a sensitivity 
of 0.67 (vs human 0.56, p=0.56; diameter stenosis 0.67, 
p=1.00; area stenosis 0.56, p=0.56; QFR 0.33, p=0.08) and 
a specificity of 0.81 (vs human 0.58, p=0.05; diameter 
stenosis 0.55, p=0.02; area stenosis 0.61, p=0.06; QFR 0.81, 
p=1.00). The PPV of DL was 0.50 (vs human 0.28, p=0.07; 
diameter stenosis 0.30, p=0.05; area stenosis 0.29, p=0.08; 
QFR 0.33, p=0.28) and the NPV was 0.89 (vs human 0.82, 
p=0.28; diameter stenosis 0.85, p=0.48; area stenosis 0.83, 
p=0.31; QFR 0.81, p=0.09).

DISCUSSION
In this feasibility study of the capacity of DL to predict 
future MI based on ICA images, DL appeared to outper-
form humans and angiographic parameters (diameter 
stenosis, area stenosis, QFR) in the prediction of FCLs 
among patients with non- significant coronary disease 
with an accuracy of 0.81 and an AUC of 0.78.

Current techniques for the identification of coronary 
lesions that will be responsible for a future MI remain 
insufficient. Among patients undergoing ICA, the risk 
stratification of coronary lesions starts with a simple visual 
assessment of stenosis severity. Yet, such assessments have 
been shown to be inaccurate and exhibit a significant 
degree of interobserver variability,16 a finding confirmed 
by this study. In order to improve the objectivity of such 
assessments, QCA permits a more precise estimation of 
the anatomical severity of coronary lesions.17 However, 
high- risk coronary lesions often exhibit intermediate or 
non- significant coronary stenosis,18 and thus measures of 
the haemodynamic impact of coronary stenoses (eg, FFR) 
have further advanced the risk stratification of CAD. In 
FAME 2 (2), FFR was shown to be a better predictor for 
MI at 2 years as compared with the QCA.3 Yet, FFR has its 
limitations as a predictor of MI. After 5 years of follow- up, 
the incidence of MI was 8.4% in the registry group of 
FAME 2 (patients with coronary stenoses all negative by 
FFR) as compared with 12% of patients with at least one 
stenosis significant by FFR treated with optimal medical 
therapy alone. Even if statistically significant, this abso-
lute difference of only 3.6% highlights the limitations 
of FFR when used as a dichotomous variable to predict 
future MI. Of note, FFR considered as a continuous vari-
able has been shown to exhibit a significant correlation 
with cardiovascular events but this was mainly driven by 
increased non- urgent revascularisation; its true predic-
tive value for future MI remains unknown.19 Indeed, in 
a pooled FAME1 and FAME2 analysis where the sum of 
FFR in the three vessels was calculated,20 there was no 
difference between groups with regard to the occurrence 
of future MI.

Figure 3 ROC curves for performance of the DL model and 
the models derived from angiographic parameters (diameter 
stenosis, area stenosis, QFR), with corresponding AUC 
values. AUC, area under the curve; DL, deep learning; QFR, 
quantitative flow ratio; ROC, receiver operating characteristic 
curve.

Table 1 Performance of each model on the test set 
according to (1) AUC, (2) Net Reclassification Index (NRI)

Model AUC P value NRI P value

Deep learning (DL) 0.81 Reference Reference Reference
Diameter stenosis 0.62 0.04 0.60 0.10

Area stenosis 0.58 0.05 0.75 0.03

QFR 0.67 0.13 0.95 0.01

P values for AUC analysis represent comparison of the DL 
model (reference) with classification based on each angiographic 
parameter. Continuous NRI was used along with its p value.
AUC, area under the curve; QFR, quantitative flow ratio.
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Identification of vulnerable plaques by intracoronary 
near- infrared spectroscopy and ultrasound has also been 
evaluated in the PROSPECT II study.21 The event rate 
in patients with at least one lesion with high- risk plaque 
characteristics was 4% after a median follow- up of 3.7 
years as compared with 1% in patients without lesions 
with high- risk plaque characteristics. Here, again, even 
if statistically significant, this absolute difference of only 
3% demonstrates the limitations of this modality in the 
prediction of future MI.

These data highlight the need for additional tools 
to improve the identification of patients at high risk of 
future MI. ML has been shown to improve the predic-
tion of MI based on clinical parameters such as cardio-
vascular risk factors and biomarker levels.4 22 However, to 
date, current applications of DL in the interpretation of 
ICA images have been limited to the automated segmen-
tation of coronary arteries or the identification of signifi-
cant coronary stenoses.7–10 To the best of our knowledge, 
this study represents the first reported use of DL for 
the prediction of future MI based on ICA images only. 
Although only a feasibility study with a small sample size, 
these results suggest that DL can be applied effectively 
to this challenging problem. Further work is required to 
validate these findings in a larger sample size.

LIMITATIONS
There are several limitations inherent in this study. ML 
models trained with insufficient data can result in poor 
approximation.23 Thus, the small sample size in this study 
represents an important limitation that should be kept 
in mind. In addition, given that the current study popu-
lation was selected for the incidence of MI following a 
baseline angiogram without significant CAD, it is a popu-
lation that is not representative of the patient population 
encountered in real- world clinical practice. For this small 
feasibility study, a skewed population with a high number 
of FCLs was needed for the creation of an effective DL 
model. However, future studies should ideally be based 
on a more representative real- world patient population. 
Additionally, during screening for this study, all patients 
with ICA images of insufficient quality for the calculation 
of QFR were excluded. As a result, the DL model was 
based on ICA images of above average quality. A further 

limitation of the reported approach was that selection of 
a single still frame from an ICA cine loop resulted in the 
loss of information that could have been relevant to the 
evaluation of the anatomical severity of a stenosis. As a 
result, future iterations of the DL algorithm should aim 
to incorporate multiple frames or even the full cine loop. 
Finally, it should be recognised that, although the features 
of coronary stenoses on ICA provide insight into the risk 
of future MI, a purely ICA- based approach to future MI 
prediction is overly simplistic. Other predictors such as 
high- risk plaque features not visible on ICA, as well as 
the clinical context (eg, presence of cardiovascular risk 
factors), may render an angiographically mild stenosis at 
higher risk of rupture. Although the goal of this study was 
to assess the feasibility of a DL- based approach applied 
to ICA images alone, future work that aims to advance 
these findings should incorporate such features into the 
DL model.

CONCLUSION
In this feasibility study, DL outperformed human visual 
assessment and established angiographic parameters in 
the prediction of FCLs. Larger studies are now required 
to confirm this finding.
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Table 2 Performance of the humans, diameter stenosis, area stenosis, QFR and DL in the prediction of FCL in the test set

Model Accuracy
Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Human 0.58 0.56 (0.23 to 0.88) 0.58 (0.41 to 0.75) 0.28 (0.07 to 0.48) 0.82 (0.66 to 0.98)

Diameter stenosis 0.58 0.67 (0.36 to 0.97) 0.55 (0.37 to 0.72) 0.30 (0.10 to 0.50) 0.85 (0.69 to 1.00)

Area stenosis 0.60 0.56 (0.23 to 0.88) 0.61 (0.44 to 0.78) 0.29 (0.08 to 0.51) 0.83 (0.67 to 0.98)

QFR 0.70 0.33 (0.03 to 0.64) 0.81 (0.67 to 0.95) 0.33 (0.03 to 0.64) 0.81 (0.67 to 0.95)

DL 0.78 0.67 (0.36 to 0.97) 0.81 (0.67 to 0.95) 0.50 (0.22 to 0.78) 0.89 (0.78 to 1.00)

DL, deep learning; FCL, future culprit lesion; NPV, negative predictive value; PPV, positive predictive value; QFR, quantitative flow ratio.

O
pen H

eart: first published as 10.1136/openhrt-2022-002237 on 3 January 2023. D
ow

nloaded from
 https://openheart.bm

j.com
 on 10 July 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.



7Mahendiran T, et al. Open Heart 2023;10:e002237. doi:10.1136/openhrt-2022-002237

Coronary artery disease

Patient consent for publication Not applicable.

Ethics approval Informed consent was obtained from each patient and the study 
protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki as 
reflected in a priori approval by the institution’s human research committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request.

Supplemental material This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer- reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY- NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non- commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non- commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Thabo Mahendiran http://orcid.org/0000-0002-0025-8162

REFERENCES
 1 De Bruyne B, Fearon WF, Pijls NHJ, et al. Fractional flow reserve- 

guided PCI for stable coronary artery disease. N Engl J Med 
2014;371:1208–17.

 2 Xaplanteris P, Fournier S, Pijls NHJ, et al. Five- Year outcomes with 
PCI guided by fractional flow reserve. N Engl J Med 2018;379:250–9.

 3 Ciccarelli G, Barbato E, Toth GG, et al. Angiography versus 
hemodynamics to predict the natural history of coronary stenoses: 
fractional flow reserve versus angiography in multivessel evaluation 2 
substudy. Circulation 2018;137:1475–85.

 4 Than MP, Pickering JW, Sandoval Y, et al. Machine learning to 
predict the likelihood of acute myocardial infarction. Circulation 
2019;140:899–909.

 5 Al- Zaiti S, Besomi L, Bouzid Z, et al. Machine learning- based 
prediction of acute coronary syndrome using only the pre- hospital 
12- lead electrocardiogram. Nat Commun 2020;11:3966.

 6 Liu W- C, Lin C- S, Tsai C- S, et al. A deep learning algorithm 
for detecting acute myocardial infarction. EuroIntervention 
2021;17:765–73 https://eurointervention.pcronline.com/article/a- 
deep-learning-algorithm-for-detecting-acute-myocardial-infarction

 7 Yang S, Kweon J, Roh J- H, et al. Deep learning segmentation of 
major vessels in X- ray coronary angiography. Sci Rep 2019;9:16897. 
9(1). Available from: http://www.nature.com/articles/s41598-019- 
53254-7

 8 Cho H, Lee June‐Goo, Kang Soo‐Jin, Lee J, Kang S, et al. 
Angiography‐Based machine learning for predicting fractional flow 
reserve in intermediate coronary artery lesions. J Am Heart Assoc 
2019;8 https://www.ahajournals.org/doi/

 9 Ovalle- Magallanes E, Avina- Cervantes JG, Cruz- Aceves I, 
et al. Transfer learning for stenosis detection in X- ray coronary 
angiography. Mathematics 2020;8:1510.

 10 Du T, Xie L, Zhang H. Automatic and multimodal analysis for 
coronary angiography: training and validation of a deep learning 
architecture. EuroIntervention https://eurointervention.pcronline. 
com/article/automatic-and-multimodal-analysis-for-coronary- 
angiography-training-and-validation-of-a-deep-learning-architecture

 11 Min HS, Yoo J, Kang SJ. Detection of optical coherence 
tomography- defined thin- cap fibroatheroma in the coronary artery 
using deep learning. EuroIntervention 2021 https://eurointervention. 
pcronline.com/article/detection-of-optical-coherence- 
tomographydefined-thin-cap-fibroatheroma-in-the-coronary-artery- 
using-deep-learning

 12 Pagnoni M, Meier D, Candreva A, et al. Future culprit detection 
based on angiography- derived FFR. Catheter Cardiovasc Interv 
2021;98:E388- E394.

 13 He K, Zhang X, Ren S. Deep residual learning for image recognition, 
2016: 770.

 14 Deng J, Dong W, Socher R. ImageNet: a large- scale hierarchical 
image database.IEEE conference on computer vision and pattern 
recognition, 2009: 248–55.

 15 Manning C, Raghavan P, Schütze H. Introduction to information 
retrieval, 2021. https://nlp.stanford.edu/IR-book/information- 
retrieval-book.html

 16 Zir LM, Miller SW, Dinsmore RE, et al. Interobserver variability in 
coronary angiography. Circulation 1976;53:627–32.

 17 Baptista J, Arnese M, Roelandt JR, et al. Quantitative coronary 
angiography in the estimation of the functional significance of 
coronary stenosis: correlations with dobutamine- atropine stress test. 
J Am Coll Cardiol 1994;23:1434–9.

 18 Crea F, Lanza GA. The elusive link between stenosis severity and 
prognosis in stable ischaemic heart disease. Heart 2003;89:961–2.

 19 Barbato E, Toth GG, Johnson NP, et al. A Prospective Natural History 
Study of Coronary Atherosclerosis Using Fractional Flow Reserve. J 
Am Coll Cardiol 2016;68:2247–55.

 20 Fournier S, Collet C, Xaplanteris P, et al. Global fractional 
flow reserve value predicts 5- year outcomes in patients with 
coronary atherosclerosis but without ischemia. J Am Heart Assoc 
2020;9:e017729.

 21 Erlinge D, Maehara A, Ben- Yehuda O, et al. Identification of 
vulnerable plaques and patients by intracoronary near- infrared 
spectroscopy and ultrasound (prospect II): a prospective natural 
history study. The Lancet 2021;397:985–95.

 22 Lee W, Lee J, Woo S- I, et al. Machine learning enhances the 
performance of short and long- term mortality prediction model in 
non- ST- segment elevation myocardial infarction. Sci Rep 2021;11.

 23 Goodfellow I, Bengio Y, Courville A. Deep Learning. In: Bach F, ed. 
Adaptive computation and machine learning series. Cambridge, MA, 
USA: MIT Press, 2016: 800 p.

 24 Reith FH, Wandell BA. A Convolutional neural network reaches 
optimal sensitivity for detecting some, but not all, patterns. IEEE 
Access 2020;8:213522–30.

O
pen H

eart: first published as 10.1136/openhrt-2022-002237 on 3 January 2023. D
ow

nloaded from
 https://openheart.bm

j.com
 on 10 July 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-0025-8162
http://dx.doi.org/10.1056/NEJMoa1408758
http://dx.doi.org/10.1056/NEJMoa1803538
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028782
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.041980
http://dx.doi.org/10.1038/s41467-020-17804-2
http://dx.doi.org/10.4244/EIJ-D-20-01155
https://eurointervention.pcronline.com/article/a-deep-learning-algorithm-for-detecting-acute-myocardial-infarction
https://eurointervention.pcronline.com/article/a-deep-learning-algorithm-for-detecting-acute-myocardial-infarction
http://dx.doi.org/10.1038/s41598-019-53254-7
http://www.nature.com/articles/s41598-019-53254-7
http://www.nature.com/articles/s41598-019-53254-7
http://dx.doi.org/10.1161/JAHA.118.011685
https://www.ahajournals.org/doi/
http://dx.doi.org/10.3390/math8091510
https://eurointervention.pcronline.com/article/automatic-and-multimodal-analysis-for-coronary-angiography-training-and-validation-of-a-deep-learning-architecture
https://eurointervention.pcronline.com/article/automatic-and-multimodal-analysis-for-coronary-angiography-training-and-validation-of-a-deep-learning-architecture
https://eurointervention.pcronline.com/article/automatic-and-multimodal-analysis-for-coronary-angiography-training-and-validation-of-a-deep-learning-architecture
https://eurointervention.pcronline.com/article/detection-of-optical-coherence-tomographydefined-thin-cap-fibroatheroma-in-the-coronary-artery-using-deep-learning
https://eurointervention.pcronline.com/article/detection-of-optical-coherence-tomographydefined-thin-cap-fibroatheroma-in-the-coronary-artery-using-deep-learning
https://eurointervention.pcronline.com/article/detection-of-optical-coherence-tomographydefined-thin-cap-fibroatheroma-in-the-coronary-artery-using-deep-learning
https://eurointervention.pcronline.com/article/detection-of-optical-coherence-tomographydefined-thin-cap-fibroatheroma-in-the-coronary-artery-using-deep-learning
http://dx.doi.org/10.1002/ccd.29736
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://dx.doi.org/10.1161/01.CIR.53.4.627
http://dx.doi.org/10.1016/0735-1097(94)90388-3
http://dx.doi.org/10.1136/heart.89.9.961
http://dx.doi.org/10.1016/j.jacc.2016.08.055
http://dx.doi.org/10.1016/j.jacc.2016.08.055
http://dx.doi.org/10.1161/JAHA.120.017729
http://dx.doi.org/10.1016/S0140-6736(21)00249-X
http://dx.doi.org/10.1038/s41598-021-92362-1
http://dx.doi.org/10.1109/ACCESS.2020.3040235
http://dx.doi.org/10.1109/ACCESS.2020.3040235

	Deep learning-­based prediction of future myocardial infarction using invasive coronary angiography: a feasibility study
	A﻿bstract﻿
	Introduction﻿﻿
	Methods
	Study design
	Study population
	Training-test set splitting
	Calculation of diameter stenosis, area stenosis and QFR
	Patch selection
	DL framework
	Human predictions
	Endpoints
	Statistical methods

	Results
	Study population
	Receiver operating characteristic curve analysis (DL performance versus angiographic parameters)
	NRI (DL performance versus angiographic parameters)
	DL versus humans and angiographic parameters in the prediction of FCL

	Discussion
	Limitations
	Conclusion
	References


